Search results for "organic solar cells"
showing 10 items of 15 documents
Thin-Film Heterojunction by Carbon Nanotube Derivatives with Enhanced Solubility and Optical Properties
2012
Enhanced efficiency in plastic planar heterojunction solar cells by AuNPs positioned at donor-acceptor interfaces
2018
A new class of copolymers containing oligothiophene moieties with different length and fullerene units have been designed and prepared by an easy and inexpensive one-step synthetic approach. The incorporation of small quantities of these copolymers into bulk heterojunction (BHJ) solar cells with donor regioregular polythiophene (P3HT) and acceptor fullerene derivate (PCBM) results in a good control of the phase separation process without further affecting the BHJ optoelectronic properties. Indeed, these copolymers allow modulating under thermal annealing the growth of domains whose size depends on the length of the copolymer repetitive units. Domain size on the same length scale of the P3HT…
Enhanced power-conversion efficiency in organic solar cells incorporating copolymeric phase-separation modulators
2018
A new class of copolymers containing oligothiophene moieties with different lengths and fullerene units have been designed and prepared by an easy and inexpensive one-step synthetic approach. The incorporation of small quantities of these copolymers into bulk heterojunction (BHJ) solar cells with donor regioregular polythiophene (P3HT) and an acceptor fullerene derivate (PCBM) results in good control of the phase separation process without further affecting the BHJ optoelectronic properties. Indeed, under thermal annealing these copolymers allow the modulation of the growth of domains whose size depends on the length of the copolymer repetitive units. Domain size on the same length scale as…
Donor/Acceptor Heterojunction Organic Solar Cells
2020
The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp
Synergies and compromises between charge and energy transfers in three-component organic solar cells
2020
In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a b…
Assembling 3D Ordered Architectures in Thin Films for Organic Solar Cells
2010
Enhanced Efficiency of Organic Solar Cells by Thiol-capped Au-Nanoparticles
2015
In this work, we present a study on the effect of thiol-capped AuNPs of various sizesin an organic solar cell.AuNPs have been obtained by laser ablation in liquid solution[2], have been functionalized both with 2-naphthalenethiol and alkanethiol having different length. In addition to bulk heterojunction structures with optimized interpenetrating network of donors and acceptor domains, we have chosen to study planar heterojunctions (PHJs), consisting of three component thin films realized by sequential deposition of P3HT, AuNPs and PCBM from orthogonal solvents.
Enhanced power-conversion efficiency in organic solar cells incorporating polymeric compatibilizers
2018
Improved performance in flexible organic solar cells by using copolymeric phase-separation modulators
2018
One of the main problems related to the low performance of the organic solar cells (OSCs), concerns the low mobility of the materials constituting the heterojunction. Indeed, the poor charge transport in the active layer is the principal cause of a competition between separation and recombination of the photogenerated carriers. In this regard, a major obstacle to enhance OSCs efficiency is developing strategies to optimize the exciton dissociation and, consequently, the charge collection at the electrodes. Donor and acceptor systems must be well mixed on the length scale of 5 – 20 nm (exciton diffusion length) to meet the criteria for efficient exciton dissociation. In addition, the network…
Photovoltaic characterization of organic solar cells
2018
In recent years organic solar cells (SCs) have reached power conversion efficiencies above 10% [1]. Organic photovoltaics is indeed an intensively pursued research field because it promises high efficiency and low cost SCs. Organic materials have unique and useful optoelectronic properties, their chemical synthesis can be cheap and easy, and can be deposited in the form of thin films even on flexible plastic substrates by simple deposition techniques such as spinning, ink-jet printing and high vacuum thermal evaporation. Here we report results of the photovoltaic characterization of organic SCs having the donor (D)/acceptor (A) heterojunction structure [2]. The SCs, fabricated by vacuum the…